Transferfunksjonen til eit tids-kontinuerleg SISO-system er generelt ein rasjonal funksjon av forma [1][2]
der er Laplace-transforma til utgangssignalet og er Laplace-transforma til inngangssignalet . Når transferfunksjonen er kjend kan vi finna utgangssignalet som produktet av transferfunksjonen og Laplace-transforma av inngangssignalet:
Multiplikasjon er ein enklare operasjon enn folding, så det er som oftast lettare å arbeida med transferfunksjonar enn med impulsresponsar og signal i tidsplanet.
Om vi faktoriserer tellar- og nevnar-polynomena respektivt får vi
på forma:
Når er lik en av røtene til tellarpolynomet ( ser vi at
. Dei komplekse verdiene , som resulterer i at blir lik null, blir difor kalla «nullpunkta» til transferfunksjonen . Tilsvarende ser vi at når er lik en av røtene til nevnerpolynomet (når går verdien til mot . Røtene til nevnarpolynomet blir kalla «polane» til transferfunksjonen. Transferfunksjonen er fullstendig bestemt av polene og nullpunktene, saman med konstanten .
Transferfunksjonen til eit tids-diskret LTI-system SISO-system har forma
der er Z-transformasjonen til utgangssekvensen og er Z-transformasjonen til inngangssekvensen (Med sekvens meiner ein sampla signal). Når transferfunksjonen er kjend kan vi finna utgangssignalet som produktet av transferfunksjonen og Z-transforma av inngangssekvensen:
Om vi faktoriserer tellar- og nevnar-polynomena respektivt får vi
på forma:
Når er lik en av røtene til tellarpolynomet ( ser vi at
. Dei komplekse verdiene , som resulterer i at blir lik null, blir difor kalla «nullpunkta» til transferfunksjonen . Tilsvarende ser vi at når er lik en av røtene til nevnerpolynomet (når går verdien til mot . Røtene til nevnarpolynomet blir kalla «polane» til transferfunksjonen. Transferfunksjonen er fullstendig bestemt av polene og nullpunktene, saman med konstanten .