Transferfunksjon

Frå Wikipedia – det frie oppslagsverket
Hopp til navigering Hopp til søk

Transferfunksjon, systemfunksjonen eller overføringsfunksjon definerer eit kontinuerleg lineært system i s-planet, eller eit diskret lineært system z-planet. Både s- og z-planet er synonyme med frekvensplanet, der frekvensen generelt er kompleks, slik at han òg modellerer demping. Føremonen med å arbeida med transferfunksjonar og signal i -planet eller -planet er at mange matematiske operasjonar er enklare i -planet og -planet enn i tidsplanet. Transferfunksjonar spelar ei viktig rolle i samband med signalhandsaming, reguleringsteknikk, telekommunikasjon, elektroakustikk, elektronikk, osb.

Kontinuerleg system[endre | endre wikiteksten]

Samanhengen mellom impulsrespons og transferfunksjon, for eit tidskontinuerleg system.

Transferfunksjonen til eit tids-kontinuerleg SISO-system er generelt ein rasjonal funksjon av forma [1][2]

der er Laplace-transforma til utgangssignalet og er Laplace-transforma til inngangssignalet . Når transferfunksjonen er kjend kan vi finna utgangssignalet som produktet av transferfunksjonen og Laplace-transforma av inngangssignalet:

I tidsplanet finn ein utgangssignalet som foldinga av impulsresponsen og inngangssignalet :

Multiplikasjon er ein enklare operasjon enn folding, så det er som oftast lettare å arbeida med transferfunksjonar enn med impulsresponsar og signal i tidsplanet.

Polar og nullpunkt[endre | endre wikiteksten]

Om vi faktoriserer tellar- og nevnar-polynomena respektivt får vi på forma:

Når er lik en av røtene til tellarpolynomet ( ser vi at . Dei komplekse verdiene , som resulterer i at blir lik null, blir difor kalla «nullpunkta» til transferfunksjonen . Tilsvarende ser vi at når er lik en av røtene til nevnerpolynomet (når går verdien til mot . Røtene til nevnarpolynomet blir kalla «polane» til transferfunksjonen. Transferfunksjonen er fullstendig bestemt av polene og nullpunktene, saman med konstanten .

Diskret system[endre | endre wikiteksten]

Samanhengen mellom impulsrespons og transferfunksjon, for eit tidsdiskret system.

Transferfunksjonen til eit tids-diskret LTI-system SISO-system har forma

der er Z-transformasjonen til utgangssekvensen og er Z-transformasjonen til inngangssekvensen (Med sekvens meiner ein sampla signal). Når transferfunksjonen er kjend kan vi finna utgangssignalet som produktet av transferfunksjonen og Z-transforma av inngangssekvensen:

I tidsplanet finn ein utgangssekvensen som foldinga av impulsresponsen og inngangssignalet :

Føremonen med å arbeida i -planet er den same som for -planet, at matematiske operasjonar er enklare enn i tidsplanet.

Polar og nullpunkt[endre | endre wikiteksten]

Om vi faktoriserer tellar- og nevnar-polynomena respektivt får vi på forma:

Når er lik en av røtene til tellarpolynomet ( ser vi at . Dei komplekse verdiene , som resulterer i at blir lik null, blir difor kalla «nullpunkta» til transferfunksjonen . Tilsvarende ser vi at når er lik en av røtene til nevnerpolynomet (når går verdien til mot . Røtene til nevnarpolynomet blir kalla «polane» til transferfunksjonen. Transferfunksjonen er fullstendig bestemt av polene og nullpunktene, saman med konstanten .

Referansar[endre | endre wikiteksten]

  1. Kuo, F.F., Network analysis ans syntesis, John Wiley & Sons., 2. utg., 1966.
  2. Lathi, B.P., Linear systems and signals, Oxford Univ. Press, 2010.

Sjå òg[endre | endre wikiteksten]