Newtons rørslelover

Frå Wikipedia – det frie oppslagsverket
Gå til: navigering, søk
Newtons første og andre lov, på latin, frå den originale Principia Mathematica frå 1687.

Newtons rørslelover er tre fysiske lover som i lag legg grunnlaget for klassisk mekanikk. Dei skildrar forholdet mellom ein lekam og kreftene som verkar på han, og rørsla desse kreftene skapar. Dei har vorte formulerte på mange måtar i løpet av dei nesten 300 åra sidan Isaac Newton først formulerte dei,[1] og kan oppsummerast som følgjer:

  1. Newtons første lov: Når resultanten av alle kreftene som verkar på ein gjenstand er lik null, er gjenstanden i ro eller i rørsle med konstant fart langs ei rett linje.[2][3]
  2. Newtons andre lov: Akselerasjonen til ein lekam er direkte proporsjonal til, og same retninga, som nettokrafta som verkar på lekamen og omvendt proporsjonal til massen til lekamen. Det vil sei at F = ma, der F er nettokrafta som verkar på lekamen, m er massen til lekamen og a er akselerasjonen til lekamen.
  3. Newtons tredje lov: Når ei kraft verkar ein lekam, verkar ei like stor og motsett retta kraft frå lekamen.

Dei tre lovene vart først nedskrivne av Isaac Newton i hans Philosophiæ Naturalis Principia Mathematica (Matematiske prinsipp i naturfilosofien), som først vart publisert i 1687.[4] Newton nytta dei til å forklare og undersøke rørsla til mange fysiske lekamar og system.[5]

Den newtonske mekanikken er i dag erstatta av spesiell relativitet, men er framleis nyttig som ei tilnærming når hastigheitene som er involvert er mykje mindre enn lysfarten.

Newtons første lov[endre | endre wikiteksten]

Den første lova seier at når nettokrafta (vektorsummen av alle krefter som verkar på ein lekam) er lik null, så er hastigheita til lekamen konstant. Hastigheit er ein vektorstorleik som uttrykker både farten til lekamen og retninta gil rørsla. Derfor tyder lova at både farten og rørsal til lekamen er konstant.

Den første lova kan uttrykkast matematisk som


\sum \mathbf{F} = 0\; \Rightarrow\; \frac{\mathrm{d} \mathbf{v} }{\mathrm{d}t} = 0.

Det vil sei at

  • Ein lekam som ligg i ro vil halde seg i ro om ikkje lekamen vert utsett for ei ytre kraft.
  • Ein lekam i rørsle vil ikkje endre hastigheit (fart og retning) om ikkje lekamen vert utsett for ei ytre kraft.

Dette er kjend som uniform rørsle. Ein lekam held fram å gjere det han gjorde fram til han vert utsett for ei kraft.

Newton sette denne lova først for å opprette eit referansesystem som andre lover kunne verke innanfor. Den første rørslelova postulerer at det finst minst eit referansesystem kalla eit newtonsk system eller eit tregleikssystem der ein lekam som ikkje er utsett for krefter flyttar seg langs ei rett linje med konstant fart.[6][7] Den første lova til Newton vert ofte omtalt som tregleikslova. Eit naudsynt vulkår for den uniforme rørsla til ein lekam relativt til eit tregleikssystem er at den totale nettokrafta som verkar på lekamen er lik null.

Lovene til Newton er berre gyldig i eit tregleikssystem. Alle referansesystem som er i uniform rørsle med omsyn til eit tregleikssystem er òg tregleikssystem.[8]

Newtons andre lov[endre | endre wikiteksten]

Den andre lova seier at nettokrafta på ein lekam er lik endringsraten (det vil sei den deriverte) til rørslemengda p i eit tregleikssystem:

\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\mathbf v)}{\mathrm{d}t}.

Den andre lova kan òg uttrykkast i form av akselerasjonen til lekamen. Sidan lova berre gjeld for system med konstant masse,[9][10][11] kan ein setje massen utanfor derivasjonen ved hjelp av konstant faktor-reglene i derivasjon. Då får ein,

\mathbf{F} = m\,\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = m\mathbf{a},

der F er nettokrafta som verkar, m er massen til lekamen, og a er akselerasjonen til lekamen. Nettokrafta som verkar skapar ein akselerasjon for lekamen. Med andre ord, om ein lekam akselererer, så vil det verke ei kraft på lekamen.

I samsvar med den første lova er den tidsderiverte av rørslemengda ulik null når rørslemengda endrar retning, sjølv om det ikkje er noko endring i storleiken, slik som i tilfelle med ei sirkelrørsle. Forholdet indikerer òg bevaring av rørslemengd. Når nettokrafta på ein lekam er lik null, er rørslemengda til lekamen konstant. Ei nettokraft er lik endringsraten av rørslemengda.

Masse som vert lagt til eller teke bort frå systemet vil skape ei endring i rørslemengda som ikkje kjem av ei ytre kraft. Ei differensiallikning er naudsynt for system med variabel masse.

Når ein omfattar spesiell relativitet er ikkje tilnærminga om at rørslemengda er produktet av kvilemassen og hastigheita nøyaktig lenger ved høg hastigheit.

Impuls[endre | endre wikiteksten]

Ein impuls J oppstår når ei kraft F verkar over tidsintervallet Δt, og er gjeven av[12][13]

 \mathbf{J} = \int_{\Delta t} \mathbf F \,\mathrm{d}t .

Sidan krafta er den tidsderiverte av rørslemengda følgjer det at

\mathbf{J} = \Delta\mathbf{p} = m\Delta\mathbf{v}.

Dette forholdet mellom impuls og rørslemengd er nærare slik Newton sjølv formulerte den andre lova.[14]

Impuls er eit omgrep som ofte vert nytta i analysen av kollisjonar og støytar.[15]

System med variabel masse[endre | endre wikiteksten]

System med variabel masse, som ein rakett som brenn brensel og sender ut gassar, er ikkje eit lukka system og kan ikkje direkte handsamast ved å la massen vere ein funksjon av tida i den andre lova;[10] altså er den følgjande formelen feil:[11]

 \mathbf{F}_\mathrm{net} = \frac{\mathrm{d}}{\mathrm{d}t}\big[m(t)\mathbf{v}(t)\big] = m(t) \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \mathbf{v}(t) \frac{\mathrm{d}m}{\mathrm{d}t}. \qquad \mathrm{(feil)}

Ein kan sjå at denne formelen er feil ved å merke seg at han ikkje tar omsyn til galileisk invarians: ein lekam med varierande masse med F = 0 i eit tregleikssystem vil sjå ut til å ha F ≠ 0 i eit anna system.[9]

Den korrekte likninga for rørsla til ein lekam med masse m som varierer med tida får ein ved å nytte den andre lova på det totale systemet som har konstant masse, systemet som inneheld både lekamen og massen som forsvinn/vert lagt til[9]

\mathbf F + \mathbf{u} \frac{\mathrm{d} m}{\mathrm{d}t} = m {\mathrm{d} \mathbf v \over \mathrm{d}t}

der u er den relative hastigheita til den forsvinnande eller innkommande massen i forhold til lekamen. Frå denne likninga kan ein finne Tsiolkovskij rakettlikning.

I somme høve vert storleiken u dm/dt å venstresida, kjend som drivkraft, definert som ei kraft (krafta lekamen utøver på den endrande massen, som utstrøyminga får ein rakett) og er inkludert i storleiken F. Set ein då inn definisjonen for akselerasjon vert likninga F = ma.

Newtons tredje lov[endre | endre wikiteksten]

Den tredje lova seier at alle krefter finst i par: om ein lekam A utøver ei kraft FA på ein annan lekam B, så vil B samstundes utøve ei kraft FBA, og dei to kreftene er like store og motsett retta: FA = −FB.[16] Den tredje lova tyder at alle krefter er vekselverknader mellom forskjellige lekamar,[17][18] og dermed finst det ikkje noko slikt som ei kraft som berre verkar i ei retning, eller ei kraft som berre verkar på éin lekam. Denne lova vert stundom kalla handlings-reaksjonslova, der FA vert kalla «handlinga» og FB «reaksjonen». Handlinga og reaksjonen skjer samstundes, og det spelar inga rolle kva av dei som vert kalla handling og reaksjon, sidan begge er ein del av ein enkel vekselverknad, og ingen av dei eksisterer utan den andre.[16]

Dei to kreftene i Newtons tredje lov er av same type (t.d. om vegen utøver ei framoverretta friksjonskraft på akselererande bilhjul, så er det òg ei friksjonskraft frå hjula bakover på vegen). Ein person som går over eit golv pressar ned mot golvet, samstundes som golvet pressar attende mot personen.[19]

Kjelder[endre | endre wikiteksten]

  1. Browne, Michael E. (1999-07) (Series: Schaum's Outline Series). Schaum's outline of theory and problems of physics for engineering and science. McGraw-Hill Companies. ss. 58. ISBN 978-0-07-008498-8. 
  2. Holzner, Steven (2005-12). Physics for Dummies. Wiley, John & Sons, Incorporated. ss. 64. ISBN 978-0-7645-5433-9. 
  3. See the Principia on line at Andrew Motte Translation
  4. Andrew Motte translation of Newton's Principia (1687) Axioms or Laws of Motion
  5. Galili, I.; Tseitlin, M. (2003). «Newton's First Law: Text, Translations, Interpretations and Physics Education». Science & Education 12 (1): 45–73. Bibcode 2003Sc&Ed..12...45G. doi:10.1023/A:1022632600805. 
  6. NMJ Woodhouse (2003). Special relativity. London/Berlin: Springer. s. 6. ISBN 1-85233-426-6. 
  7. Thornton, Marion (2004). Classical dynamics of particles and systems (5th ed.). Brooks/Cole. s. 53. ISBN 0-534-40896-6. 
  8. 9,0 9,1 9,2 Plastino, Angel R.; Muzzio, Juan C. (1992). «On the use and abuse of Newton's second law for variable mass problems». Celestial Mechanics and Dynamical Astronomy (Netherlands: Kluwer Academic Publishers) 53 (3): 227–232. Bibcode 1992CeMDA..53..227P. doi:10.1007/BF00052611. ISSN 0923-2958.  "We may conclude emphasizing that Newton's second law is valid for constant mass only. When the mass varies due to accretion or ablation, [an alternate equation explicitly accounting for the changing mass] should be used."
  9. 10,0 10,1 Halliday; Resnick. Physics. 1. ss. 199. ISBN 0-471-03710-9. «It is important to note that we cannot derive a general expression for Newton's second law for variable mass systems by treating the mass in F = dP/dt = d(Mv) as a variable. [...] We can use F = dP/dt to analyze variable mass systems only if we apply it to an entire system of constant mass having parts among which there is an interchange of mass.»  [Emphasis as in the original]
  10. 11,0 11,1 Kleppner, Daniel; Robert Kolenkow (1973). An Introduction to Mechanics. McGraw-Hill. ss. 133–134. ISBN 0-07-035048-5. «Recall that F = dP/dt was established for a system composed of a certain set of particles[. ... I]t is essential to deal with the same set of particles throughout the time interval[. ...] Consequently, the mass of the system can not change during the time of interest.» 
  11. Hannah, J, Hillier, M J, Applied Mechanics, p221, Pitman Paperbacks, 1971
  12. Raymond A. Serway, Jerry S. Faughn (2006). College Physics. Pacific Grove CA: Thompson-Brooks/Cole. s. 161. ISBN 0-534-99724-4. 
  13. I Bernard Cohen (Peter M. Harman & Alan E. Shapiro, Eds) (2002). The investigation of difficult things: essays on Newton and the history of the exact sciences in honour of D.T. Whiteside. Cambridge UK: Cambridge University Press. s. 353. ISBN 0-521-89266-X. 
  14. WJ Stronge (2004). Impact mechanics. Cambridge UK: Cambridge University Press. s. 12 ff. ISBN 0-521-60289-0. 
  15. 16,0 16,1 Resnick; Halliday; Krane (1992). Physics, Volume 1 (4th ed.). s. 83. 
  16. C Hellingman (1992). «Newton’s third law revisited». Phys. Educ. 27 (2): 112–115. Bibcode 1992PhyEd..27..112H. doi:10.1088/0031-9120/27/2/011. «Quoting Newton in the Principia: It is not one action by which the Sun attracts Jupiter, and another by which Jupiter attracts the Sun; but it is one action by which the Sun and Jupiter mutually endeavour to come nearer together.». 
  17. Resnick and Halliday (1977). «Physics». John Wiley & Sons. pp. 78–79. «Any single force is only one aspect of a mutual interaction between two bodies.» 
  18. Hewitt (2006), p. 75

Bakgrunnsstoff[endre | endre wikiteksten]