Sterk kjernekraft

Frå Wikipedia – det frie oppslagsverket
Gå til: navigering, søk
Partikkelfysikk
Teoriar
Standardmodellen
Kvantemekanikk
Kvantefeltteori (QFT)
Kvanteelektrodynamikk (QED)
Kvantekromodynamikk (QCD)
Den spesielle relativitetsteorien
Vekselverknad
Sterk kjernekraft
Elektromagnetisme
Svak kjernekraft
Gravitasjon
Fargekraft
Eigenskapar
Energi
Rørslemengd
Elektrisk ladning
Spinn
Paritet
Isospinn
Svakt isospinn
Fargeladning

Sterk kjernekraft blir òg kalla nukleon-til-nukleon-kraft, kjernekraft eller den residuale fargekrafta og virkar mellom to eller fleire nukleon i atomkjernen. Han bind saman proton og nøytron slik at dei kan danne ein stabil kjerne.

I periodar har omgrepa den residuale kjernekrafta og den sterke kjernekrafta hatt noko ulike tydingar. Skiljet vart innført på 1970-talet i samband med utviklinga av kvantekromodynamikk (QCD). Før den tida vart kraftpotensialet mellom to nukleon omtalt som den sterke kjernekrafta, men med innføringa av kvarkar og gluon vart den sterke kjernekrafta assosiert med fargeeigenskapen til kvarkane. No brukar ein omgrepet fargekraft om den fundamentale kraftverknaden mellom kvarkane, medan sterk kjernekraft (igjen) skildrar kraftverknaden mellom hadron som baryon (til dømes nukleoner) og meson.

Sidan hadrona skal vere «fargenøytrale», er det på noko avstand ikkje nokre fargekraft (sterk vekselverknad). Men fargeladningen er ikkje symmetrisk fordelt i kvarkane, og dette gjev opphav til ein residual fargekraft. som vil kunne kople til residual fargekraft frå nabonukleona. Denne fell raskt av, typisk 1/r7 på avstandar over fermi radius (omtrent radiusen på eit proton), og er difor praktisk utan kopling til andre enn nabonukleona.

Balansen mellom sterk kjernekraft mellom nabonukleona og coulombkraft frå elektromagnetisk fråstøyting mellom protona er avgjerande for oppbygginga til atomkjernen, stabilitet og bindingsenergi.

Historie[endre | endre wikiteksten]

Krafta som bind nukleona saman har vore sentral innan kjernefysikken sidan feltet oppstod i 1932 med oppdaginga til James Chadwick av nøytronet. Tradisjonelt har målet for kjernefysikken vore å forstå eigenskapane til atomkjernen ut ifrå kreftene mellom nukleona.

I 1935, gjorde Hideki Yukawa dei første forsøka på å forklare eigenskapane til krafta som bind atomkjernen. I følgje han skulle massive boson (som er ein type meson) formidle krafta mellom nukleona. På grunn av framvoksteren av kvantekromodynamikk blir ikkje meson modellen rekna som fundamental, men han blir enno rekna som det beste utgangspunktet for kvantitative nukleon-nukleon-potensial.

Det viste seg å bli ei formidabel oppgåve å skildre kjernekraften, sjølv med enkle fenomenologiske modellar, og det tok eit kvart hundreår før ein kom fram til dei første semi-empiriske kvantitative modellane på 1950-talet. Sidan då har det vorte gjort store framsteg både eksperimentelt og teoretisk. Dei fleste grunnleggjande spurnadene vart utforska og løyst på 1960- og 1970-talet. I dei seinare åra har kjernefysikarane fokusert på meir raffinerte detaljar slik som ladningsavhengigheit, den nøyaktige verdien av koplingskonstanten, forbetra faseendringsanalyse, høgare presisjon på parametrar, spreiingsforsøkt ved eit vidt spekter av energiar og forsøk på å utleie den residuale kjernekrafta frå QCD.

Grunnleggjande eigenskapar for den residuale kjernekrafta[endre | endre wikiteksten]

  • Sterk kjernekraft påverkar berre hadron som nøyton og proton, ikkje lepton (t.d. elektron) eller andre partiklar.
  • For to nukleonar med ein avstand typisk i atomkjernen (1,3 fm) er det ei veldig sterk tiltrekkande kraft på 104 newton.
  • For mindre avstandar er krafta sterkt fråstøytande. Dette saman med punktet ovanfor held nukleona på ein viss gjennomsnittleg avstand frå kvarandre.
  • Utanfor 1,3 fm vil krafta minke til null typisk med 1/r7.
  • For korte distansar er kjernekrafta typisk 60 gonger sterkare enn Coulombkrafta. Dermed kan kjernekrafta overvinne coloumbfråstøytinga mellom to proton, og kjernar som Helium-3 er moglege. Coulombkrafta har lengre rekkjevidd fordi han fell av kvadratisk (1/r²), og for avstandar større enn 2,5 fm er coloumbkrafta langt sterkare enn sterk kjernekraft som då kan neglisjerast.
  • Den residuale kjernekrafta er nestan uavhengig av om nukleona er nøytron eller proton. Denne eigenskapen blir kalla ladningsuavhengigheit.
  • Krafta avheng av om spinnet til nukleona er parallelt eller antiparallelt
  • Det finst òg eit stort ikkje-sentralt kraftbidrag. Denne delen av kjernekrafta har slike eigenskapar at bane-angulært moment ikkje er bevart. For ei rein sentralkraft er banespinnet alltid bevart.

Nukleon-nukleon-potensiale[endre | endre wikiteksten]

System med to nukleonar slik som deuteriumkjernen og spreiingsforsøk med nøytron-nøytron eller nøytron-proton er ideelle for å studere den sterk kjernekrafta. Slike system kan skildrast ved å ta utgangspunkt i eit potensial (til dømes Yukawa potensiale) og løyse den tilhøyrande schrödingerlikninga. Skildringa blir svært komplisert sjølv for små kjernar, og er difor ikkje utleidd frå grunnprinsipp. Forma på potensialet er difor som regel utleidd fenomenologisk (ved observasjon av spreiingsforsøk). For reaksjonar som skjer på litt større avstandar kan teoriar basert på utveksling av meson brukast til å konstruere potensialet. Parametrane i potensialet må tilpassast slik at ein reproduserer eksperimentelle data, slik som bindingsenergi eller tverrsnitt/faseskift.

Dei mest brukte nukleon-nukleon potensiala er parispotensialet, Argonne AV18-potensialet, CD-Bonn potensialet og Nijmegenpotensialet.

Frå nukleonar til atomkjernar[endre | endre wikiteksten]

Det overordna målet innan kjernefysikk er å skildre eigenskapane til atomkjernen ved hjelp av dei grunnleggjande kreftane mellom nukleona. Dette blir kalla ein mikroskopisk eller ab initio framgangsmåte. Det finst to store utfordringar:

  • Utrekningar i fleirlekamsystem er kompliserte og krev kraftige datamaskinar
  • I system med meir enn to nukleonar vil det vere naudsynt å ta med i rekninga krefter som påverkar partiklar tre og tre (tre-lekamkrefter).

Dette er utfordringar som set sterke avgrensingar for kva som er mogleg med dagens teknikkar. Med moderne superdatamaskinar er det mogleg å gjere skalmodell-berekningar som inkluderer to- og tre-lekamkrefter for kjernar med nukleontal opp mot 10-12.

Potensiale for heile atomkjernen -- nukleære potensial[endre | endre wikiteksten]

Ein måte å skildre kreftar i atomkjernen er å bruke eit potensial for heile kjernen, i staden for eksplisitt å ta høgd for kvar enkelt av komponentane i kjernen. Dette blir gjerne kalla ein makroskopisk framgangsmåte. Til dømes kan spreiing av nøytron på atomkjernar skildrast som ei planbølgje som blir påverka av potensialet til kjernen. Når potensialet blir brukt på denne måten er det ikkje uvanleg at det har ein reell og ein imaginær del. Dette blir gjerne kalla for ein optisk modell fordi det minner om korleis ljos blir spreidd av ei glaskule.

Kjelder[endre | endre wikiteksten]

  • Denne artikkelen bygger på «Sterk kjernekraft» frå Wikipedia på bokmål, den 23. februar 2013.
  • Gerald Edward Brown and A. D. Jackson, The Nucleon-Nucleon Interaction, (1976) North-Holland Publishing, Amsterdam ISBN 0-7204-0335-9
  • R. Machleidt and I. Slaus, "The nucleon-nucleon interaction", J. Phys. G 27 (2001) R69 (topical review).
  • Kenneth S. Krane, "Introductory Nuclear Physics", (1988) Wiley & Sons.
  • P. Navrátil and W.E. Ormand, "Ab initio shell model with a genuine three-nucleon force for the p-shell nuclei", Phys. Rev. C 68, 034305 (2003).